Chapter 2

The Physical Layer

The Theoretical Basis for Data Communication

- Fourier Analysis
- Bandwidth-Limited Signals
- Maximum Data Rate of a Channel

Bandwidth-Limited Signals

A binary signal and its root-mean-square Fourier amplitudes.

(b) - (c) Successive approximations to the original signal.

Bandwidth-Limited Signals (2)

(d) – (e) Successive approximations to the original signal.

Bandwidth-Limited Signals (3)

Bps	T (msec)	First harmonic (Hz)	# Harmonics sent
300	26.67	37.5	80
600	13.33	75	40
1200	6.67	150	20
2400	3.33	300	10
4800	1.67	600	5
9600	0.83	1200	2
19200	0.42	2400	1
38400	0.21	4800	0

Relation between data rate and harmonics.

Guided Transmission Data

- Magnetic Media
- Twisted Pair
- Coaxial Cable
- Fiber Optics

Twisted Pair

- (a) Category 3 UTP.
- (b) Category 5 UTP.

Coaxial Cable

A coaxial cable.

Fiber Optics

- (a) Three examples of a light ray from inside a silica fiber impinging on the air/silica boundary at different angles.
- (b) Light trapped by total internal reflection.

Transmission of Light through Fiber

Attenuation of light through fiber in the infrared region.

Fiber Cables

- (a) Side view of a single fiber.
- (b) End view of a sheath with three fibers.

Fiber Cables (2)

ltem	LED	Semiconductor laser	
Data rate	Low	High	
Fiber type	Multimode	Multimode or single mode	
Distance	Short	Long	
Lifetime	Long life	Short life	
Temperature sensitivity	Minor	Substantial	
Cost	Low cost	Expensive	

A comparison of semiconductor diodes and LEDs as light sources.

Fiber Optic Networks

A fiber optic ring with active repeaters.

Fiber Optic Networks (2)

A passive star connection in a fiber optics network.

Wireless Transmission

- The Electromagnetic Spectrum
- Radio Transmission
- Microwave Transmission
- Infrared and Millimeter Waves
- Lightwave Transmission

The Electromagnetic Spectrum

The electromagnetic spectrum and its uses for communication.

Radio Transmission

- (a) In the VLF, LF, and MF bands, radio waves follow the curvature of the earth.
- (b) In the HF band, they bounce off the ionosphere.

Politics of the Electromagnetic Spectrum

The ISM bands in the United States.

Lightwave Transmission

Convection currents can interfere with laser communication systems.

A bidirectional system with two lasers is pictured here.

Communication Satellites

- Geostationary Satellites
- Medium-Earth Orbit Satellites
- Low-Earth Orbit Satellites
- Satellites versus Fiber

Communication Satellites

Communication satellites and some of their properties, including altitude above the earth, round-trip delay time and number of satellites needed for global coverage.

Communication Satellites (2)

Band	Downlink	Uplink	Bandwidth	Problems
L	1.5 GHz	1.6 GHz	15 MHz	Low bandwidth; crowded
S	1.9 GHz	2.2 GHz	70 MHz	Low bandwidth; crowded
С	4.0 GHz	6.0 GHz	500 MHz	Terrestrial interference
Ku	11 GHz	14 GHz	500 MHz	Rain
Ka	20 GHz	30 GHz	3500 MHz	Rain, equipment cost

The principal satellite bands.

Communication Satellites (3)

VSATs using a hub.

Low-Earth Orbit Satellites Iridium

- (a) The Iridium satellites from six necklaces around the earth.
- (b) 1628 moving cells cover the earth.

Globalstar

- (a) Relaying in space.
- (b) Relaying on the ground.

Public Switched Telephone System

- Structure of the Telephone System
- The Politics of Telephones
- The Local Loop: Modems, ADSL and Wireless
- Trunks and Multiplexing
- Switching

Structure of the Telephone System

- (a) Fully-interconnected network.
- (b) Centralized switch.
- (c) Two-level hierarchy.

Structure of the Telephone System (2)

A typical circuit route for a medium-distance call.

Major Components of the Telephone System

- Local loops
 - Analog twisted pairs going to houses and businesses
- Trunks
 - Digital fiber optics connecting the switching offices
- Switching offices
 - Where calls are moved from one trunk to another

The Politics of Telephones

The relationship of LATAs, LECs, and IXCs. All the circles are LEC switching offices. Each hexagon belongs to the IXC whose number is on it.

The Local Loop: Modems, ADSL, and Wireless

The use of both analog and digital transmissions for a computer to computer call. Conversion is done by the modems and codecs.

Modems

- (a) A binary signal
- (b) Amplitude modulation

- (c) Frequency modulation
- (d) Phase modulation

Modems (2)

- (a) QPSK.
- (b) QAM-16.
- (c) QAM-64.

Modems (3)

- (a) V.32 for 9600 bps.
- (b) V32 bis for 14,400 bps.

Digital Subscriber Lines

Bandwidth versus distanced over category 3 UTP for DSL.

Digital Subscriber Lines (2)

Operation of ADSL using discrete multitone modulation.

Digital Subscriber Lines (3)

A typical ADSL equipment configuration.

Wireless Local Loops

Architecture of an LMDS system.

Frequency Division Multiplexing

- (a) The original bandwidths.
- (b) The bandwidths raised in frequency.
- (b) The multiplexed channel.

Wavelength Division Multiplexing

Wavelength division multiplexing.

Time Division Multiplexing

The T1 carrier (1.544 Mbps).

Time Division Multiplexing (2)

Delta modulation.

Time Division Multiplexing (3)

Multiplexing T1 streams into higher carriers.

Time Division Multiplexing (4)

Two back-to-back SONET frames.

Time Division Multiplexing (5)

SONET		SDH	Data rate (Mbps)		
Electrical	Optical	Optical	Gross	SPE	User
STS-1	OC-1		51.84	50.112	49.536
STS-3	OC-3	STM-1	155.52	150.336	148.608
STS-9	OC-9	STM-3	466.56	451.008	445.824
STS-12	OC-12	STM-4	622.08	601.344	594.432
STS-18	OC-18	STM-6	933.12	902.016	891.648
STS-24	OC-24	STM-8	1244.16	1202.688	1188.864
STS-36	OC-36	STM-12	1866.24	1804.032	1783.296
STS-48	OC-48	STM-16	2488.32	2405.376	2377.728
STS-192	OC-192	STM-64	9953.28	9621.504	9510.912

SONET and SDH multiplex rates.

Circuit Switching

- (a) Circuit switching.
- (b) Packet switching.

Message Switching

(a) Circuit switching (b) Message switching (c) Packet switching

Packet Switching

Item	Circuit-switched	Packet-switched
Call setup	Required	Not needed
Dedicated physical path	Yes	No
Each packet follows the same route	Yes	No
Packets arrive in order	Yes	No
Is a switch crash fatal	Yes	No
Bandwidth available	Fixed	Dynamic
When can congestion occur	At setup time	On every packet
Potentially wasted bandwidth	Yes	No
Store-and-forward transmission	No	Yes
Transparency	Yes	No
Charging	Per minute	Per packet

A comparison of circuit switched and packet-switched networks.

The Mobile Telephone System

 First-Generation Mobile Phones: Analog Voice

Second-Generation Mobile Phones:
 Digital Voice

Third-Generation Mobile Phones:
 Digital Voice and Data

Advanced Mobile Phone System

- (a) Frequencies are not reused in adjacent cells.
- (b) To add more users, smaller cells can be used.

Channel Categories

The 832 channels are divided into four categories:

- Control (base to mobile) to manage the system
- Paging (base to mobile) to alert users to calls for them
- Access (bidirectional) for call setup and channel assignment
- Data (bidirectional) for voice, fax, or data

D-AMPS Digital Advanced Mobile Phone System

- (a) A D-AMPS channel with three users.
- (b) A D-AMPS channel with six users.

GSM

Global System for Mobile Communications

GSM uses 124 frequency channels, each of which uses an eight-slot TDM system

GSM (2)

A portion of the GSM framing structure.

CDMA – Code Division Multiple Access

Six examples:

```
S_1 \cdot C = (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1)/8 = 1

S_2 \cdot C = (2 + 0 + 0 + 0 + 2 + 2 + 0 + 2)/8 = 1

S_3 \cdot C = (0 + 0 + 2 + 2 + 0 - 2 + 0 - 2)/8 = 0

S_4 \cdot C = (1 + 1 + 3 + 3 + 1 - 1 + 1 - 1)/8 = 1

S_5 \cdot C = (4 + 0 + 2 + 0 + 2 + 0 - 2 + 2)/8 = 1

S_6 \cdot C = (2 - 2 + 0 - 2 + 0 - 2 - 4 + 0)/8 = -1

(d)
```

- (a) Binary chip sequences for four stations
- (b) Bipolar chip sequences
- (c) Six examples of transmissions
- (d) Recovery of station C's signal

Third-Generation Mobile Phones: Digital Voice and Data

Basic services an IMT-2000 network should provide

- High-quality voice transmission
- Messaging (replace e-mail, fax, SMS, chat, etc.)
- Multimedia (music, videos, films, TV, etc.)
- Internet access (web surfing, w/multimedia.)

Cable Television

- Community Antenna Television
- Internet over Cable
- Spectrum Allocation
- Cable Modems
- ADSL versus Cable

Community Antenna Television

An early cable television system.

Internet over Cable

Cable television

Internet over Cable (2)

The fixed telephone system.

Spectrum Allocation

Frequency allocation in a typical cable TV system used for Internet access

Cable Modems

Typical details of the upstream and downstream channels in North America.